(a) <u>Source</u> "load" $R_1 \lesssim \overline{V_{n_1}^2} \simeq 4kTR_1 (4)$ $\frac{R_2}{4V_{n2}^2} = 4kTR_2$ One source at $\frac{1}{\sqrt{V_{n2}^2}} = 4kTR_2$ Of indep. sources. By superposition, consider power delivered by Uni. Next consider V_{nz}^2 . $I_{nz} = V_{nz}$ $R_1 + R_2$ $\begin{cases} R_{1} & \overline{I_{n2}^{2}} \\ \hline I_{n2} \\ \hline V_{n2} \\ \hline \end{array} & \stackrel{!}{\longrightarrow} \overline{I_{n2}^{2}} \\ \hline (R_{1} + R_{2})^{2} \\ \hline (R_{1} + R_{2})^{2} \\ \hline (R_{1} + R_{2})^{2} \\ \hline \end{array}$ Expected value $\longrightarrow P_{RI} = \overline{I_{n2}^{2}} R_{I}$ of power delivered to $= \frac{4kTR_1R_2}{(R_1 + R_2)^2}$ Since $P_{P_1} = P_{R_2}$ there is no net flow of power. ... We did not break physics!

(b)
$$R_{1}$$
 yout
 V_{n}^{2} $R_{2} = R_{1}$ Maximum power frampler
regarizes $R_{1} = R_{2}$.
 $R_{2} = R_{2}$ $V_{n} = R_{1}$ $V_{n} = V_{n}$
 $R_{1} + R_{2}$ $R_{1} + R_{1}$ L_{2}
 $V_{0ut} = \frac{R_{2}}{R_{1} + R_{2}} = \frac{4 k T R_{1}}{R_{1} + R_{1}} = k T R_{1}$.
 $P = \frac{V^{2}}{R}$ $P = \frac{V_{n}^{2}}{4} = \frac{4 k T R_{1}}{R_{1}} = k T$.
 $R = \frac{V^{2}}{R}$ $R_{1} = \frac{V^{2}}{R_{2}}$
Think about the units. $\left[\frac{V_{n}^{2}}{R_{1}}\right] = \frac{V^{2}}{H_{2}}$.
Check: $\left[kT\right] = J$ $K = J = J \cdot S = W \cdot S = W$.
 $K = \frac{S}{S} = \frac{W \cdot S}{H_{2}}$
(c). $Bw = 1$ GH_{2} \therefore $P = kT \times 1 \times 10^{9}$
 $= 1.38 \times 10^{-33} \times 300 \times 1 \times 10^{9}$
 $= 4.14 \times 10^{-12} W$.
 \therefore 4 pW (regniting cooling to 0 K) is
 $Rot practical J$