10.12 Since
$$V_{in1} = V_{in2}$$
, we have equal current
Sharing.
 $I_{c1} = (I_{EE} + \Delta I)$
 $I_{c2} = (I_{EE} + \Delta I)$.
 $I_{c2} = (I_{EE} + \Delta I)$.
 $I_{c2} = V_{cc} - I_{c1}R_{c} = V_{cc} - (I_{EE} + \Delta I)R_{c}$.
 $V_{0ut+2} = V_{cc} - I_{c2}R_{c} = V_{cc} - (I_{EE} + \Delta I)R_{c}$.
 $V_{0ut+2} = V_{cc} - I_{c2}R_{c} = V_{cc} - (I_{EE} + \Delta I)R_{c}$.
 I_{c2}
 $V_{0ut+2} = V_{cc} - I_{c2}R_{c} = V_{cc} - (I_{c2} + \Delta I)R_{c}$.
 I_{c2}
 $V_{0ut+2} = -\Delta IR_{c}$.
 I_{c2}
 $V_{0ut+2} = -\Delta IR_{c}$.
 I_{c2}
 $V_{0ut+2} = 0$ (No charge in output
when I_{EE} charges).
(could also have used the large signal result from
lectures, $V_{0ut} = -R_{c}I_{EE}$ tanh $(V_{u1} - V_{u2})$ and subst.
 $V_{in1} = V_{in2}$ to obtain $V_{uut} = 0$; Indep. of I_{EE} .